Artificial

Graph Adaptive Semantic Transfer for Cross-domain Sentiment Classification

Kai Zhang

Anhui Province Key Lab. of Big Data Analysis and Application, University of S&T of China & State Key Laboratory of Cognitive Intelligence Hefei, China kkzhang0808@mail.ustc.edu.cn

Kun Zhang

School of Computer Science and Information Engineering, Hefei University of Technology Hefei, China zhang1024kun@gmail.com Qi Liu, Zhenya Huang Anhui Province Key Lab. of Big Data Analysis and Application, University of S&T of China & State Key Laboratory of Cognitive Intelligence Hefei, China {qiliuql,huangzhy}@ustc.edu.cn


Mengdi Zhang, Wei Wu Meituan Beijing, China mdzhangmd@gmail.com wuwei19850318@gmail.com Mingyue Cheng

Anhui Province Key Lab. of Big Data
Analysis and Application, University
of S&T of China & State Key
Laboratory of Cognitive Intelligence
Hefei, China
mycheng@mail.ustc.edu.cn

Enhong Chen*

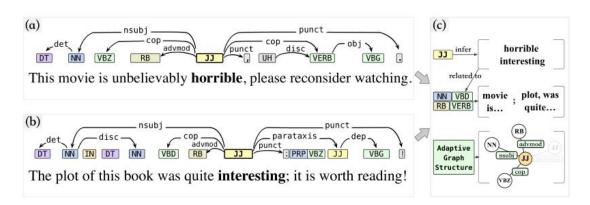
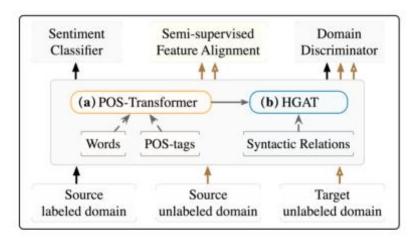
Anhui Province Key Lab. of Big Data Analysis and Application, University of S&T of China Hefei, China cheneh@ustc.edu.cn

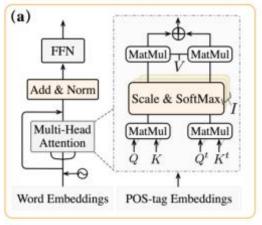
(SIGIR-2022)

Reported by Zhaoze Gao

- 1. Introduction
- 2. Approach
- 3. Experiments

Introduction


Figure 1: The transferable syntactic structures* of two examples (i.e., (a), (b)). The colorful boxes ("DT") and black lines (e.g., "det") indicate POS tags and syntactic relations, respectively. As shown in (c), the syntactic structures are similar between domains so that it is easy for human to understand the hidden knowledge behind sentences in different domains. However, those adaptive graph features are largely ignored by existing domain adaptation research.

First, sentiment words play a crucial role in CDSC, while POS tags can distinguish sentiment words (e.g., "horrible" and "interesting" in Figure 1) via the POS tag "JJ" in a natural way, i.e., the "JJ" label means the word is an adjective.

Second, the sentiment polarity of reviews is largely influenced by the sentiment word's neighbors, whether they are in-domain or across-domain.

Third, the syntactic graph structures of sentences in different domains are remarkably similar, which means that the syntactic rules are domain-invariant and can be naturally transferred across domains.

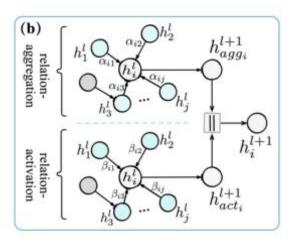
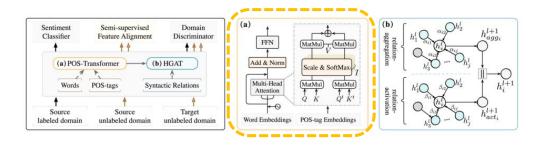
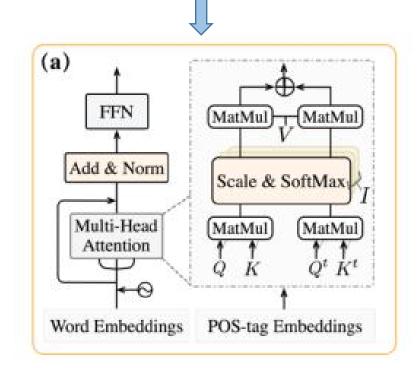
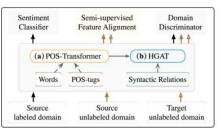
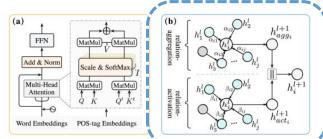




Figure 2: The architecture of GAST, which consists three parts: (a) the *POS-Transformer* that can learn sequential semantic representation by considering both the word sequences and POS tags; (b) the *HGAT* module which can exploit adaptive syntactic semantics of the sentence through the syntactic relation graph. (c) an *IDS* (i.e., Sentiment Classifier, Semi-supervised Feature Alignment and Domain Discriminator) to optimize the model and encourage it to be domain-invariant and syntax-aware.

$$\begin{aligned} &\{x_{s}^{i}, y_{s}^{i}\}_{i=1}^{n_{sl}} \in \mathcal{D}_{s}^{l} \quad \{x_{s}^{i}\}_{i=n_{sl}+1}^{n_{s}} \in \mathcal{D}_{s}^{u} \} \\ &\mathcal{D}_{t} = \{x_{t}^{i}\}_{i=1}^{n_{t}} \\ &s = \{s_{1}, s_{2}, ..., s_{n}\} \\ &\mathcal{G} = (\mathcal{V}, \mathcal{A}, \mathcal{R}) \end{aligned}$$


 \mathcal{A} is adjacent matrix with $A_{ij} = 1$ if there exists a dependency relation between word s_i and s_j , and $A_{ij} = 0$ \mathcal{R} is a set of syntactic relations (e.g., det, nsubj and cop)


$$Z = concat(z_1, z_2, \dots, z_I), \tag{1}$$

$$z_i = Att.(Q_i, K_i, V_i) + Att.(Q_i^t, K_i^t, V_i),$$
 (2)


$$Att.(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d/I}}\right)V,$$
 (3)

$$R = \max(0, ZW_1 + b_1)W_2 + b_2,\tag{4}$$

$$h_{agg_i}^{l+1} = \|_{k=1}^{\tilde{K}} \sigma(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^{lk} W_{lk} h_j^l), \tag{5}$$

$$f_{ij}^{lk} = \sigma(a_{lk}^{T}[W_{lk}h_{i}^{l}||W_{lk}h_{j}^{l}||W_{lk}r_{ij}]),$$
 (6)


$$\alpha_{ij}^{lk} = \frac{\exp\left(f_{ij}^{lk}\right)}{\sum_{j=1}^{N_i} \exp\left(f_{ij}^{lk}\right)},\tag{7}$$

$$\beta_{ij}^{lk} = \frac{\exp\left(F_{act.}(h_i^l, h_j^l)\right)}{\sum_{j=1}^{N_l} \exp\left(F_{act.}(h_i^l, h_j^l)\right)},$$
(8)

$$F_{act.} = \frac{\left(W_Q^{lk} h_i^l\right) \left(W_K^{lk} h_j^l + W_{Kr}^l r_{ij}\right)^T}{\sqrt{d/\bar{K}}},\tag{9}$$

$$h_{act_{i}}^{l+1} = \|_{k=1}^{\tilde{K}} \sigma(\sum_{j \in \mathcal{N}_{i}} \beta_{ij}^{lk}(W_{V}^{lk} h_{j}^{l} + W_{Vr}^{l} r_{ij})), \tag{10}$$

$$h_i^{l+1} = h_{agg_i}^{l+1} \parallel h_{act_i}^{l+1}. \tag{11}$$

$$L_c = -\frac{1}{n_s^l} \sum_{i=1}^{n_s^l} (y_s^i \ln \hat{y}_s^i + (1 - y_s^i) \ln(1 - \hat{y}_s^i)), \tag{12}$$

$$L_d = -\frac{1}{N} \sum_{i=1}^{N} (y_d^i \ln \hat{y}_d^i + (1 - y_d^i) \ln(1 - \hat{y}_d^i)), \tag{13}$$

$$L_a = -\frac{1}{M} \sum_{i=1}^{M} \sum_{j=1}^{C} \underline{\tilde{y}}^i \ln \tilde{y}^i , \qquad (14)$$

$$L = \lambda_c L_c + \lambda_d L_d + \lambda_a L_a , \qquad (15)$$

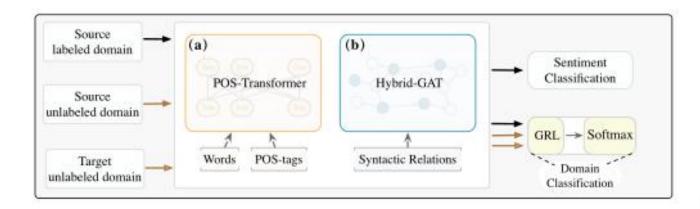


Figure 7: The framework of the ablation model G_Non_IDS as described in section 4.6. It mainly includes two tasks, i.e., sentiment classification and domain classification.

$$\hat{y}^d = softmax(W_d R + b_d). \tag{16}$$

$$G(x) = x, \quad \frac{\partial G(x)}{\partial x} = -I.$$
 (17)

$$L_d = -\frac{1}{N} \sum_{i=1}^{N} \left(y_d^i \ln \hat{y}_d^i + \left(1 - y_d^i \right) \ln \left(1 - \hat{y}_d^i \right) \right), \tag{18}$$

Table 1: Statistics of datasets after pre-processing.

Domains	Testing set percentage								
Domanis	#Train	#Vali.	#Test	#Unlabel					
Books	1,600	400	2,000	4,000					
DVD	1,600	400	2,000	4,000					
Electronics	1,600	400	2,000	4,000					
Kitchen	1,600	400	2,000	4,000					

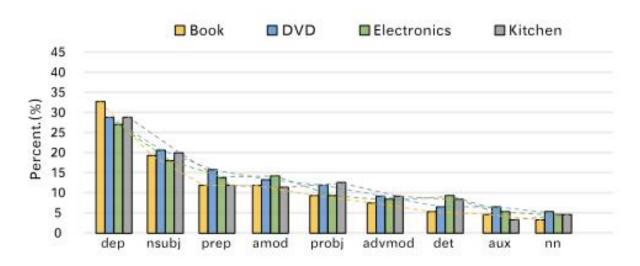


Figure 3: The percent of transferable dependency relations in different domains. We visualized the top 9 relations.

Table 2: Sentiment classification accuracy (%) on the twelve transfer tasks.

	1	DVD(D)			Book (B))	Ele	ctronics	(E)	K	itchen (l	K)
Baselines	$D \mapsto B$	$D \mapsto E$	$D \mapsto K$	$B \mapsto D$	$B \mapsto E$	$B \mapsto K$	$E \mapsto D$	$E \mapsto B$	$E \mapsto K$	$K \mapsto D$	$K \mapsto B$	$K \mapsto E$
SCL	77.8	75.2	75.5	80.4	76.5	77.1	74.5	71.6	81.7	75.2	71.3	78.8
SFA	78.8	75.8	75.7	81.3	75.6	76.9	75.4	72.4	82.6	74.7	72.4	80.7
DANN	80.5	77.6	78.8	83.2	76.4	77.2	77.6	73.5	84.2	75.1	74.3	82.2
AMN	84.5	81.2	82.7	85.6	82.4	81.7	81.7	76.6	85.7	81.5	80.9	86.1
HATN	86.6	86.3	87.4	86.5	85.7	86.8	84.3	81.5	87.9	84.7	84.1	87.0
IATN	87.0	86.9	85.8	86.8	86.5	85.9	84.1	81.8	88.7	84.4	84.7	87.6
BERT-DAAT	90.8	89.3	90.5	89.7	89.5	90.7	90.1	88.9	93.1	88.8	87.9	91.7
LSTM	75.6	73.4	-	78.6	75.2	-	72.2	69.6	-	_		2
TextGCN	80.8	77.6	79.2	85.3	81.1	79.7	82.6	78.2	82.3	83.3	84.1	81.7
FastGCN	81.6	80.6	81.1	86.0	82.7	82.0	83.5	78.7	84.5	84.2	85.7	83.4
GAST	87.9	87.3	89.1	88.2	86.2	87.4	85.6	83.4	89.3	87.7	87.5	89.4
BERT-GAST	91.1	90.7	92.1	90.4	91.2	91.5	90.7	89.4	93.5	89.7	89.2	92.6
G_Non_Pos-Tran.	85.9	84.7	87.6	86.8	83.4	85.5	84.2	80.4	87.8	85.8	85.5	87.4
G_Non_HGAT	86.6	85.9	88.1	87.4	85.0	86.1	84.5	81.3	88.2	86.4	86.7	88.2
G_Non_IDS	87.2	86.6	87.9	87.6	85.8	86.7	85.0	82.6	88.5	85.9	86.2	87.7
G_Non_agg	87.5	86.7	88.9	88.0	85.9	86.9	85.2	82.6	89.0	87.3	87.2	89.1
G_Non_act	87.3	86.3	88.7	87.7	85.3	86.2	84.8	81.8	88.7	86.9	87.1	88.7

	This	n	novie	is		unbelievabl	y horribl	ple	ase	reconsider	watching.	unbelievably
1) Transformer	0.08		0.11	0.09	9	0.16	0.15	0.1	19	0.13	0.09	movie reconside
2) Pos-Transformer	0.02		0.17	0.1	1	0.21	0.18	0.0	06	0.15	0.10	CON INSURED CORP - CORP
3) Hybrid GAT	0.00		0.22	0.13	2	0.26	0.21	0.0	00	0.19	0.00	horrible
			(a) C	ase Ex	ample	1: The atten	tion values rela	d to the	word	"horrible".		is 🐷
			(a) C	ase Ex	ample	1: The atten	tion values rela	d to the	word	"horrible".		is 🐷
	The	plot	(a) C	ase Ex	ample book		tion values rela quite intere			"horrible".	reading!	quite
1) Transformer	The 0.05							ing; i	t		reading!	quite plot worth
Transformer Pos-Transformer		plot	of	this	book	was	quite intere	ting; i	t 05 0	is worth	-	quite worth

Figure 4: Attention score visualization of the different words. The attention values from vanilla attention (i.e., Att.(Q, K, V) in formula 2), POS-attention (i.e., $Att.(Q^t, K^t, V)$ in formula 2) and HGAT (i.e., β in formula 8) are associated with the row (1), row (2), and row (3) respectively in both examples. Note that, some values are infinitely close to 0. That makes sense because HGAT makes the attention value more concentrated on the syntactic-related words.

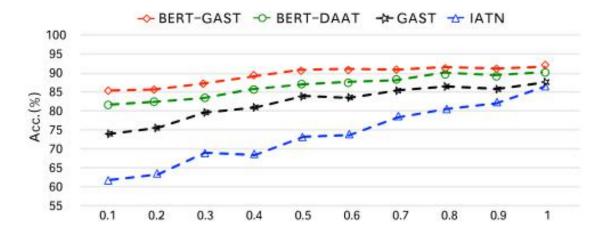


Figure 5: The influence of sample number. We explore the impact of sample number with different ratio (i.e., abscissa) of source domain. For the limited space, we only show the results of the task " $B \mapsto D$ ".

Table 3: The performance (%) of different syntactic graphs constructed by different parsers on $D \mapsto *$ tasks.

Syntax Parser	$D \mapsto B$	$D \mapsto E$	$D \mapsto K$
(1) Without Graph	86.6	85.9	88.1
(2) Stanford Graph	87.1	86.6	88.6
+compare with (1)	(+0.5)	(+0.7)	(+0.5)
(3) Biaffine Graph +compare with (1) +compare with (2)	87.9	87.3	89.1
	(+1.3)	(+1.4)	(+1.0)
	(+0.8)	(+0.7)	(+0.5)

Table 4: The Influence of model depth (i.e., attention heads) on $D \mapsto *$ tasks. The metric is accuracy (%).

Models	$D \mapsto B$	$D \mapsto E$	$D \mapsto K$
HGAT w 1 head	86.9	86.4	87.5
HGAT w 2 head	87.2	86.8	88.4
HGAT w 3 head	87.9	87.3	89.1
HGAT w 4 head	87.7	87.2	88.7
HGAT w 5 head	87.5	86.9	88.2
Trans. w 5 head	86.6	86.1	88.4
Trans. w 6 head	87.6	86.7	88.7
Trans. w 7 head	87.5	87.0	89.1
Trans. w 8 head	87.9	87.3	89.1
Trans. w 9 head	86.8	87.1	88.8
Trans. w 10 head	87.2	87.3	89.0

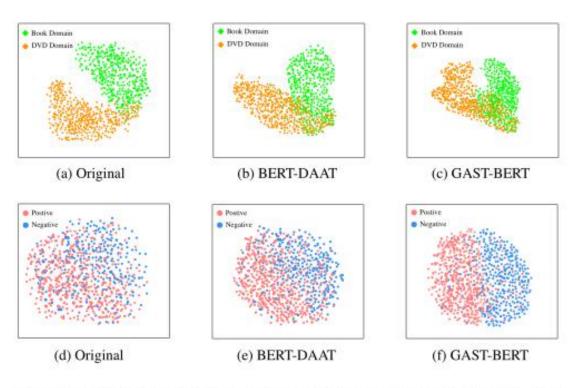


Figure 6: The t-SNE projection of the extracted features. The above three subfigures (i.e., (a) \sim (c)) show t-SNE visualization of different model's feature embedding for the $B\mapsto D$ task. The red and blue points in (d) \sim (f) denote the target positive and target negative examples, respectively.

Thank you!